The global single-photon emission computed tomography market size reached USD 2.28 Billion in 2021 and it is expected to enjoy a valuation of USD 2.45 Billion by the end of 2022. Furthermore, with the rising prevalence of various cardiovascular diseases and the growing need for better diagnostic technologies, the overall demand for single-photon emission computed tomography (SPECT) is poised to grow at 6.9% CAGR between 2022 and 2032, totaling a market valuation of ~USD 4.76 Billion by 2032.
Based on product, the single imaging gamma cameras segment dominated the global single-photon emission computed tomography market with a market share of about 75.5% in 2021 and it is likely to retain its dominance during the projected period.
Single-photon emission computed tomography is a potential nuclear medicine technique that produces 3-D images of functional processes in the human body while allowing non-invasive diagnostic imaging of metabolic processes using short-lived radioisotopes. Applications for single-photon emission computed tomography scanners are numerous and one key application is the detection of chronic illnesses.
Nuclear imaging apparatus includes single-photon emission computed tomography imaging systems. Single-photon emission computed tomography is used to assess the metabolic and functional data of cells and organs as it relates to disease processes. Enhancing various equipment's diagnostic capabilities in organic-specific or dual-modality systems has recently been crucial, and is anticipated to fuel market expansion during the projection period.
Attribute | Key Statistics |
---|---|
Single Photo Emission Computed Tomography Market Base Value (2021) | USD 2.28 Billion |
Estimated Market Value (2022) | USD 2.45 Billion |
Projected Market Value (2032) | USD 4.76 Billion |
Value-based CAGR (2022 to 2032) | 6.9% |
Market Share of Top 5 Countries | 59.3% |
The single-photon emission computed tomography (SPECT) systems market is driven by the rising prevalence of cancer, neurological diseases, and cardiovascular diseases.
Similarly, rising patient awareness, an increasing number of initiatives for research and development, and a rise in demand for diagnostic imaging devices such as MRI and X-ray devices are expected to boost the market during the forecast period. The overall single-photon emission computed tomography holds approximately 6.1% of the global medical imaging market which stood at USD 37.2 Billion in 2021.
Exclusive Offer: 30% Off on Regional Reports
Get a free sample report and customize your regions for a 30% discount on your regional report!
The global single-photon emission computed tomography market expanded at a CAGR of 5.4% during the historic period from 2012 to 2021. However, with the growing demand for effective diagnostic techniques, the overall sales of single-photon emission computed tomography products are likely to grow at 6.9% CAGR through 2032.
Demand for single-photon emission computed tomography scanners in cancer diagnosis has increased significantly over the past few years and the trend is likely to continue during the forecast period. The technology offers a sophisticated diagnostic tool that helps in early disease diagnosis coupled with the capability to detect disease progression at each stage.
Cancer is one of the leading causes of death in many countries around the globe, accounting for nearly 10 million deaths in 2020, or nearly one in six deaths.
Industry experts have noted that the diagnostic accuracy of single-photon emission computed tomography scanners in certain clinical oncological examinations such as lung cancer, prostate cancer, colorectal cancer, melanoma, and several other cancers is higher than other diagnostic imaging techniques.
Manufacturers are concentrating on integrating several technological advancements into their single-photon emission computed tomography scanning machines, including higher storage capacity and increased efficiency about faster scanning times.
From a business perspective, increased data storage will enable physicians to archive more information from patients' prior scans, track tumor development over the course of a patient's disease prognosis, and perform more scans per day, increasing the financial viability of single-photon emission computed tomography scanners in the nuclear medicine industry.
Growing Application of Single-Photon Emission Computed Tomography in Various Medical Fields and Advancements in radiopharmacy to Boost Market
Globally, single-photon emission computed tomography (SPECT) and X-ray transmission computed tomography (CT) scan hybrid imaging is becoming more popular. With the exact attenuation correction and fusion imaging that this cutting-edge technology offers, diagnostic sensitivity, and specificity are increased.
By defining prognostic and treatment monitoring capabilities and metabolic information provided by traditional nuclear imaging methods, the combination of SPECT and CT aids in improved disease staging. As a result, SPECT/CT has increasingly been used in clinical tests, particularly in the areas of musculoskeletal, cardiology, endocrinology, cancer, infection, and others.
Due to their use in creating a customized treatment plan for individualized treatment, multimodality imaging techniques will further change diagnostic imaging procedures in the future.
The practice of nuclear medicine has changed dramatically over the past ten years as a result of amazing developments in radiopharmacy, instrumentation, and information technology, all of which have played significant roles in fostering the field's expansion.
The field of nuclear medicine has been revived by new technologies like PET/CT and SPECT/CT. It is also anticipated that the development of novel radiopharmaceuticals and other hybrid modalities, like SPECT/MRI, would spur the development of new diagnostic and therapeutic uses.
All the above scenarios offer a great opportunity for market growth during the forecast period from 2022 to 2032.
The expansion of the single-photon emission computed tomography market over the projection period may be constrained by the lower availability and insufficient supply of molecular isotopes, which are necessary for diagnostic imaging devices.
For instance, there have been numerous supply shortages for technetium and molybdenum during the past few years, which are used in the bulk of SPECT operations in cardiology. Due to aging and safety concerns, the Canadian reactors that supply the molecular isotopes were permanently shut down in 2016, which limited the supply.
The field of nuclear medicine imaging has reached milestones with the advent of hybrid/fusion scanners which are paving the way to a new era in the field of imaging.
The introduction of new radiation detector systems in nuclear medicine imaging has led to a multifold increase in sensitivity and energy resolution. With the use of CZT (cadmium zinc telluride) detectors, SPECT/CT is likely to become organ-specific.
Similarly, the higher price of SPECT devices, such as SPECT-CT, SPECT-MRI, and the integration and combination of various diagnostics and imaging devices is usually a major cost restraint for the single-photon emission computed tomography market.
Only professionals who are trained within the healthcare domain for day-to-day operations and maintenance can work on single-photon emission computed tomography devices. Globally, the demand for SPECT devices is increasing. The shortage of trained specialists and professionals will hamper the growth of the global single-photon emission computed tomography market over the forecast period.
These factors cumulatively propose a negative effect on the developmental growth of the single-photon emission computed tomography market.
Presence of Favourable Reimbursement Policies Boosting Market in the USA
The USA holds approximately 38.0% share in the global single-photon emission computed tomography market in 2021 and is projected to grow at a robust pace during the forecast period.
Favorable reimbursement for nuclear medicine devices and treatment is increasing in North America which is expected to boost the growth of the United States of America single-photon emission computed tomography market.
The percentage of the total payor mix from private/self-pay revenue increased from 66.5% in 2018 to 67.4% in 2020. The Medicare percentage decreased from 21.8% to 20.5%.
Rapid Expansion of Healthcare Infrastructure Generating demand in China
With a market share of over 5.3% in 2021 in the global market, China's single-photon emission computed tomography market is anticipated to grow at a healthy pace throughout the forecast period.
This expansion is attributed to the country's fast-developing medical infrastructure, an increase in scientific research on the diagnosis, treatment, and follow-up of chronic illnesses, as well as significant support from the public and commercial sectors for cancer research.
Rising Geriatric Population Driving Market in Germany
As per FMI, Germany is set to hold a market share of nearly 5.0% in the global single-photon emission computed tomography market during the forecast period owing to an increase in the elderly population, increased prevalence of cancer, clinical usage of diagnostics techniques that use radiopharmaceuticals and increasing funding from the government.
40-59-year-olds make up the largest age group in Germany, at 23 million people. The most recent figures from 2021 confirm that the next-largest age group was 65 years and older, at 18.44 million.
Check Free Sample Report & Save 40%!
Select your niche segments and personalize your insights for smart savings. Cut costs now!
Demand to Remain High for Single Imaging Cameras
The single imaging gamma cameras segment held a market share of about 75.5% in the global market in 2021 and it is expected to grow at a CAGR of 6.3% throughout the forecast period.
The most used imaging tool in nuclear medicine is the gamma camera, often known as a scintillation camera. It allows the capture of both dynamic and static images of the area of interest in the human body. Thus single-imaging gamma cameras are ahead of other products in the single-photon emission computed tomography market.
Growing Popularity of SPECT in Cardiology to Generate Maximum Revenues
Based on application, the cardiology segment held a revenue share of around 36.6% in the global single photon emission computed tomography market in 2021 and is expected to expand at a moderate growth rate over the forecast period.
Cardiologists utilize single-photon emission computed tomography to see how the blood flows through various areas of the heart. Doctors can see where and how well blood flows into and around the heart by injecting a radioactive tracer (such as technetium or sestamibi) that has been marked with gamma cameras.
In this ailment, medical professionals determine whether a patient's heart has been negatively affected by conditions such as hypertension, coronary artery disease, atherosclerosis (artery hardening), valvular diseases like mitral valve prolapse, congenital bicuspid valves brought on by infection in early childhood, etc.
Most of the SPECT Product Sales Remain Concentrated in Hospitals
The hospital's segment held a 56.9% market share in the single-photon emission computed tomography market in 2021 and it is expected to grow at a CAGR of 7.6% during the forecast period, owing to the easy access and availability of SPECT products across hospitals for cardiology and oncology treatments.
The SPECT market will boost due to a large number of patients being admitted to the hospital for seeking treatment. The availability of advanced medical equipment with improved efficiency and technology along with trained staff and healthcare professionals add to the high growth of this segment.
Similarly, the presence of advanced medical equipment attracts a large number of patients to come to hospitals to seek treatment and get maximum satisfaction and relief. Thus hospitals are ahead of other end users in the single-photon emission computed tomography market.
To establish a dominant position in the market, major players in the single-photon emission computed tomography market are aggressively concentrating on partnerships, product launches, and expansion.
For instance
Attribute | Details |
---|---|
Estimated Market Size (2022) | USD 2.45 Billion |
Projected Market Size (2032) | USD 4.76 Billion |
Anticipated Growth Rate (2022 to 2032) | 6.9% |
Forecast Period | 2012 to 2021 |
Historical Data Available for | 2022 to 2032 |
Market Analysis | USD Million for Value |
Key Regions Covered | North America; Latin America; Europe; South Asia; East Asia; Oceania; and Middle East & Africa |
Key Countries Covered | USA, Canada, Brazil, Mexico, Argentina, UK, Germany, Italy, Russia, Spain, France, BENELUX, Nordic Countries, Russia, India, Thailand, Indonesia, Malaysia, Vietnam, Philippines Japan, China, South Korea, Australia, New Zealand, Turkey, GCC Countries, North Africa, Israel, North Africa, and South Africa |
Key Market Segments Covered | Product, Application, End User, and Region |
Key Companies Profiled | Bruker Corp.; DDD-Diagnostic AS; Digmed Corp.; General Electric Co.; Mediso Ltd.; MiE GmbH; MILabs BV; Siemens Healthineers AG; Spectrum Dynamics Medical Inc.; GE Healthcare; CardiArc; Beijing Hamamatsu Photon Techniques INC.; SHENZHEN BASDA MEDICAL APPARATUS CO., LTD.; PNPMed; NuCare Inc. |
Report Coverage | Market Forecast, Company Share Analysis, Competition Intelligence, Drivers, Restraints, Opportunities and Threats Analysis, Market Dynamics and Challenges, and Strategic Growth Initiatives |
The global single-photon emission computed tomography market is expected to reach worth USD 2.45 Billion in 2022.
The single-photon emission computed tomography is expected to reach USD 4.76 Billion by the end of 2032, with sales revenue expected to register a growth rate of 6.9% CAGR.
Rapid technological advancements, rise in volume of free standing imaging centers, and expanded applications for single-photon emission computed tomography in oncology are some of the key trends in the single-photon emission computed tomography market.
The USA, Japan, China, Germany, and the Uk are expected to drive demand for single-photon emission computed tomography.
North America, spearheaded by the USA will continue to remain one of the key markets for single-photon emission computed tomography.
Demand for single-photon emission computed tomography in South Asia is expected to grow at 7.7% CAGR over the next ten years.
Demand for single-photon emission computed tomography in Europe is expected to register a growth of 6.8% during the forecast period.
The USA, Japan, and China are the key producers of single-photon emission computed tomography.
Bruker Corp., DDD-Diagnostic AS, Digirad Corp., General Electric Co., Mediso Ltd., MiE GmbH, MILabs BV, Siemens Healthineers AG, Spectrum Dynamics Medical Inc., GE Healthcare, CardiArc, Beijing Hamamatsu Photon Techniques INC., SHENZHEN BASDA, MEDICAL APPARATUS CO., LTD., PNPMed, NuCare Inc. are some of the key players in the single-photon emission computed tomography market.
The market for single-photon emission computed tomography expanded at a CAGR rate of 5.4% during the historical years of 2012 to 2021.
Estimated Size, 2024 | USD 2,468.3 million |
---|---|
Projected Size, 2034 | USD 4,059.1 million |
Value-based CAGR (2024 to 2034) | 5.1% |
Market Size (2024E) | USD 5210.7 million |
---|---|
Market Projected Size (2034F) | USD 7566.1 million |
Value CAGR (2024 to 2034) | 3.8% |
Market Value for 2024 | USD 7577.5 million |
---|---|
Market Value for 2034 | USD 9987.5 million |
Market CAGR (2024 to 2034) | 2.8% |
Market Valuation (2023) | USD 1.3 billion |
---|---|
Market Valuation (2033) | USD 2.1 billion |
Market CAGR (2023 to 2033) | 5.3% |
Explore Diagnostic Devices Insights
View ReportsThank you!
You will receive an email from our Business Development Manager. Please be sure to check your SPAM/JUNK folder too.