Global biotherapeutics virus removal filters market demand is anticipated to be valued at US$ 451.2 million in 2023. It is forecasted to thrive at a CAGR of 8.0% from 2023 to 2033, reaching a market valuation of US$ 972.6 million by 2033. Growth is attributed to the pre-determined risk of contamination in biotherapeutic products and technological advancement in healthcare. From 2018 to 2022, a CAGR of 5.8% was registered for this market.
Attributes | Details |
---|---|
Biotherapeutics Virus Removal Filters Market Share (2022) | US$ 424.3 million |
Biotherapeutics Virus Removal Filters Market Share (2023) | US$ 451.2 million |
Biotherapeutics Virus Removal Filters Market Share (2033) | US$ 972.6 million |
Biotherapeutics Virus Removal Filters Market Share (2023 to 2033) | 8.0% |
The biotherapeutics virus removal filters can be used either in vivo or in-vitro environments. In biotherapeutics virus removal filtration, the virus removability is based on a size-exclusion mechanism that is those viruses that are superior to the mean pore size, became trapped.
The biotherapeutics virus removal filters are basically used during the manufacturing of biotherapeutic drug products or samples such as therapeutic replacement enzymes, antibodies, blood, derivatives of plasma, and biopharmaceuticals. The pre-determined risk of contamination in biotherapeutic products is the major factor that can upsurge the growth of the biotherapeutics virus removal filters market.
North America is expected to dominate the biotherapeutics virus removal filter market due to the advent of advanced technologies in this region. Overall, the global biotherapeutics virus removal filters market is expected to show significant growth over a forecast period.
Don't pay for what you don't need
Customize your report by selecting specific countries or regions and save 30%!
Increasing awareness about the benefits of using biotherapeutics virus removal filters among healthcare professionals and consumers fuelling the demand for the biotherapeutics virus removal filters market.
Technological advancements in filter design and manufacturing improve performance, reduce costs, and increase efficiency will boost the growth of the market in the forecasting period. The rising incidence of infectious diseases and growing investments in healthcare infrastructure development provide lucrative opportunities to the market.
Although the biotherapeutics virus removal filters market has numerous end-uses, there are numerous obstacles that likely pose a challenge to market growth. Lack of technical expertise and lack of awareness may impede the growth of the biotherapeutics virus removal filter market.
North America was the largest market for the biotherapeutics virus removal filters market and the trend is expected to continue into the forecast period owing to the increasing number of research going on monoclonal antibodies (mAb) and recombinant protein, which require virus removal filters.
North America is expected to be the next dominant region witnessing high adoption rates for the biotherapeutics virus removal filters market during the forecast period. The technological advancement in the healthcare sector in the region is expected to augment the biotherapeutics virus removal filter market. The region is forecasted to have a 33.2% share of the biotherapeutics virus removal filters market.
According to Future Market Insights Europe is expected to hold the second-largest market share in the global biotherapeutics virus removal filters market due to the advanced medical facilities and easy availability of the biotherapeutics virus removal filters in the market in the region. Europe is predicted to account for a total 29.5% share in the global biotherapeutics virus removal filters market.
Increasing healthcare investments and the presence of prominent market vendors and providers also benefit Europe’s market. The global biotherapeutics virus removal filter market is gaining traction in the region due to increasing research facilities and the developing biopharmaceutical industry. Some stringent government regulations in Germany and France in terms of approval, restrain the growth of this market in the European region.
Get the data you need at a Fraction of the cost
Personalize your report by choosing insights you need
and save 40%!
Despite the threat of the COVID-19 pandemic having subsided, there is a lingering apprehension about contracting the infection through direct and indirect means. Hence, healthcare providers are making sure their facilities are properly sanitized and rendered germ-free. This is the widening of the uptake of biotherapeutics virus removal filters to a large extent. Here are some notable start-ups operating within this domain.
Company Name | Spry Therapeutics |
---|---|
Origin | United States |
Year of Establishment | 2018 |
Company Name | BioLife |
---|---|
Origin | Canada |
Year of Establishment | 2004 |
Company Name | MDI Membrane Technologies |
---|---|
Origin | United States |
Year of Establishment | 2014 |
Company Name | Flow Filters |
---|---|
Origin | Canada |
Year of Establishment | 2007 |
Company Name | Agentis Air |
---|---|
Origin | United States |
Year of Establishment | 2019 |
Company Name | FilterEasy |
---|---|
Origin | United States |
Year of Establishment | 2012 |
Company Name | Pacific Air Filtration |
---|---|
Origin | United States |
Year of Establishment | 2014 |
Some of the key participants present in the global biotherapeutics virus removal filters market includes Pall Corporation, Z-Medica, LLC, Asahi Kasei Corporation, Merck KGaA, and Sartorius AG among others.
Attributed to the presence of such a high number of participants, the market is highly competitive. While global players such as Pall Corporation, Z-Medica, LLC, and Asahi Kasei Corporation account for a considerable market size, several regional-level players are also operating across key growth regions, particularly in the Asia Pacific.
Attribute | Details |
---|---|
Forecast Period | 2023 to 2033 |
Historical Data Available for | 2018 to 2022 |
Market Analysis | US$ Million for Value |
Key Regions Covered | North America; Latin America; Europe; Asia Pacific; Middle East & Africa (MEA) |
Key Countries Covered | United States, Canada, Germany, United Kingdom, Nordic, Russia, BENELUX, Poland, France, Spain, Italy, Czech Republic, Hungary, Rest of EMEAI, Brazil, Peru, Argentina, Mexico, South Africa, Northern Africa, GCC Countries, China, Japan, South Korea, India, ASEAN, Thailand, Malaysia, Indonesia, Australia, New Zealand, Others |
Key Segments Covered | Technology, Application, End-user, Region |
Report Coverage | Market Forecast, Company Share Analysis, Competition Intelligence, Trend Analysis, Market Dynamics and Challenges, and Strategic Growth Initiatives |
The projected CAGR of the Biotherapeutics Virus removal filters Market by 2033 is 8%.
The projected market value for 2033 is US$ 972.6 million.
The market is estimated to secure a valuation of US$ 451.2 million in 2023.
The food and beverage industry are the key consumer of the Biotherapeutics Industry.
1. Executive Summary
1.1. Global Market Outlook
1.2. Demand-side Trends
1.3. Supply-side Trends
1.4. Technology Roadmap Analysis
1.5. Analysis and Recommendations
2. Market Overview
2.1. Market Coverage / Taxonomy
2.2. Market Definition / Scope / Limitations
3. Market Background
3.1. Market Dynamics
3.1.1. Drivers
3.1.2. Restraints
3.1.3. Opportunity
3.1.4. Trends
3.2. Scenario Forecast
3.2.1. Demand in Optimistic Scenario
3.2.2. Demand in Likely Scenario
3.2.3. Demand in Conservative Scenario
3.3. Opportunity Map Analysis
3.4. Product Life Cycle Analysis
3.5. Supply Chain Analysis
3.5.1. Supply Side Participants and their Roles
3.5.1.1. Producers
3.5.1.2. Mid-Level Participants (Traders/ Agents/ Brokers)
3.5.1.3. Wholesalers and Distributors
3.5.2. Value Added and Value Created at Node in the Supply Chain
3.5.3. List of Raw Material Suppliers
3.5.4. List of Existing and Potential Buyer’s
3.6. Investment Feasibility Matrix
3.7. Value Chain Analysis
3.7.1. Profit Margin Analysis
3.7.2. Wholesalers and Distributors
3.7.3. Retailers
3.8. PESTLE and Porter’s Analysis
3.9. Regulatory Landscape
3.9.1. By Key Regions
3.9.2. By Key Countries
3.10. Regional Parent Market Outlook
3.11. Production and Consumption Statistics
3.12. Import and Export Statistics
4. Global Market Analysis 2018 to 2022 and Forecast, 2023 to 2033
4.1. Historical Market Size Value (US$ Million) & Volume (Units) Analysis, 2018 to 2022
4.2. Current and Future Market Size Value (US$ Million) & Volume (Units) Projections, 2023 to 2033
4.2.1. Y-o-Y Growth Trend Analysis
4.2.2. Absolute $ Opportunity Analysis
5. Global Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Technology
5.1. Introduction / Key Findings
5.2. Historical Market Size Value (US$ Million) & Volume (Units) Analysis By Technology, 2018 to 2022
5.3. Current and Future Market Size Value (US$ Million) & Volume (Units) Analysis and Forecast By Technology, 2023 to 2033
5.3.1. Size Exclusion Technology
5.3.2. Depth Filtration Technology
5.4. Y-o-Y Growth Trend Analysis By Technology, 2018 to 2022
5.5. Absolute $ Opportunity Analysis By Technology, 2023 to 2033
6. Global Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Application
6.1. Introduction / Key Findings
6.2. Historical Market Size Value (US$ Million) & Volume (Units) Analysis By Application, 2018 to 2022
6.3. Current and Future Market Size Value (US$ Million) & Volume (Units) Analysis and Forecast By Application, 2023 to 2033
6.3.1. Monoclonal Antibodies
6.3.2. Blood & Plasma
6.3.3. Enzymes
6.3.4. Proteins
6.4. Y-o-Y Growth Trend Analysis By Application, 2018 to 2022
6.5. Absolute $ Opportunity Analysis By Application, 2023 to 2033
7. Global Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By End User
7.1. Introduction / Key Findings
7.2. Historical Market Size Value (US$ Million) & Volume (Units) Analysis By End User, 2018 to 2022
7.3. Current and Future Market Size Value (US$ Million) & Volume (Units) Analysis and Forecast By End User, 2023 to 2033
7.3.1. Biopharmaceutical Companies
7.3.2. Clinical Research Organizations
7.3.3. Academic Institutes
7.3.4. Other End Users
7.4. Y-o-Y Growth Trend Analysis By End User, 2018 to 2022
7.5. Absolute $ Opportunity Analysis By End User, 2023 to 2033
8. Global Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Region
8.1. Introduction
8.2. Historical Market Size Value (US$ Million) & Volume (Units) Analysis By Region, 2018 to 2022
8.3. Current Market Size Value (US$ Million) & Volume (Units) Analysis and Forecast By Region, 2023 to 2033
8.3.1. North America
8.3.2. Latin America
8.3.3. Western Europe
8.3.4. Eastern Europe
8.3.5. South Asia and Pacific
8.3.6. East Asia
8.3.7. Middle East and Africa
8.4. Market Attractiveness Analysis By Region
9. North America Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
9.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
9.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
9.2.1. By Country
9.2.1.1. USA
9.2.1.2. Canada
9.2.2. By Technology
9.2.3. By Application
9.2.4. By End User
9.3. Market Attractiveness Analysis
9.3.1. By Country
9.3.2. By Technology
9.3.3. By Application
9.3.4. By End User
9.4. Key Takeaways
10. Latin America Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
10.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
10.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
10.2.1. By Country
10.2.1.1. Brazil
10.2.1.2. Mexico
10.2.1.3. Rest of Latin America
10.2.2. By Technology
10.2.3. By Application
10.2.4. By End User
10.3. Market Attractiveness Analysis
10.3.1. By Country
10.3.2. By Technology
10.3.3. By Application
10.3.4. By End User
10.4. Key Takeaways
11. Western Europe Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
11.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
11.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
11.2.1. By Country
11.2.1.1. Germany
11.2.1.2. UK
11.2.1.3. France
11.2.1.4. Spain
11.2.1.5. Italy
11.2.1.6. Rest of Western Europe
11.2.2. By Technology
11.2.3. By Application
11.2.4. By End User
11.3. Market Attractiveness Analysis
11.3.1. By Country
11.3.2. By Technology
11.3.3. By Application
11.3.4. By End User
11.4. Key Takeaways
12. Eastern Europe Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
12.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
12.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
12.2.1. By Country
12.2.1.1. Poland
12.2.1.2. Russia
12.2.1.3. Czech Republic
12.2.1.4. Romania
12.2.1.5. Rest of Eastern Europe
12.2.2. By Technology
12.2.3. By Application
12.2.4. By End User
12.3. Market Attractiveness Analysis
12.3.1. By Country
12.3.2. By Technology
12.3.3. By Application
12.3.4. By End User
12.4. Key Takeaways
13. South Asia and Pacific Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
13.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
13.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
13.2.1. By Country
13.2.1.1. India
13.2.1.2. Bangladesh
13.2.1.3. Australia
13.2.1.4. New Zealand
13.2.1.5. Rest of South Asia and Pacific
13.2.2. By Technology
13.2.3. By Application
13.2.4. By End User
13.3. Market Attractiveness Analysis
13.3.1. By Country
13.3.2. By Technology
13.3.3. By Application
13.3.4. By End User
13.4. Key Takeaways
14. East Asia Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
14.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
14.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
14.2.1. By Country
14.2.1.1. China
14.2.1.2. Japan
14.2.1.3. South Korea
14.2.2. By Technology
14.2.3. By Application
14.2.4. By End User
14.3. Market Attractiveness Analysis
14.3.1. By Country
14.3.2. By Technology
14.3.3. By Application
14.3.4. By End User
14.4. Key Takeaways
15. Middle East and Africa Market Analysis 2018 to 2022 and Forecast 2023 to 2033, By Country
15.1. Historical Market Size Value (US$ Million) & Volume (Units) Trend Analysis By Market Taxonomy, 2018 to 2022
15.2. Market Size Value (US$ Million) & Volume (Units) Forecast By Market Taxonomy, 2023 to 2033
15.2.1. By Country
15.2.1.1. GCC Countries
15.2.1.2. South Africa
15.2.1.3. Israel
15.2.1.4. Rest of MEA
15.2.2. By Technology
15.2.3. By Application
15.2.4. By End User
15.3. Market Attractiveness Analysis
15.3.1. By Country
15.3.2. By Technology
15.3.3. By Application
15.3.4. By End User
15.4. Key Takeaways
16. Key Countries Market Analysis
16.1. USA
16.1.1. Pricing Analysis
16.1.2. Market Share Analysis, 2022
16.1.2.1. By Technology
16.1.2.2. By Application
16.1.2.3. By End User
16.2. Canada
16.2.1. Pricing Analysis
16.2.2. Market Share Analysis, 2022
16.2.2.1. By Technology
16.2.2.2. By Application
16.2.2.3. By End User
16.3. Brazil
16.3.1. Pricing Analysis
16.3.2. Market Share Analysis, 2022
16.3.2.1. By Technology
16.3.2.2. By Application
16.3.2.3. By End User
16.4. Mexico
16.4.1. Pricing Analysis
16.4.2. Market Share Analysis, 2022
16.4.2.1. By Technology
16.4.2.2. By Application
16.4.2.3. By End User
16.5. Germany
16.5.1. Pricing Analysis
16.5.2. Market Share Analysis, 2022
16.5.2.1. By Technology
16.5.2.2. By Application
16.5.2.3. By End User
16.6. UK
16.6.1. Pricing Analysis
16.6.2. Market Share Analysis, 2022
16.6.2.1. By Technology
16.6.2.2. By Application
16.6.2.3. By End User
16.7. France
16.7.1. Pricing Analysis
16.7.2. Market Share Analysis, 2022
16.7.2.1. By Technology
16.7.2.2. By Application
16.7.2.3. By End User
16.8. Spain
16.8.1. Pricing Analysis
16.8.2. Market Share Analysis, 2022
16.8.2.1. By Technology
16.8.2.2. By Application
16.8.2.3. By End User
16.9. Italy
16.9.1. Pricing Analysis
16.9.2. Market Share Analysis, 2022
16.9.2.1. By Technology
16.9.2.2. By Application
16.9.2.3. By End User
16.10. Poland
16.10.1. Pricing Analysis
16.10.2. Market Share Analysis, 2022
16.10.2.1. By Technology
16.10.2.2. By Application
16.10.2.3. By End User
16.11. Russia
16.11.1. Pricing Analysis
16.11.2. Market Share Analysis, 2022
16.11.2.1. By Technology
16.11.2.2. By Application
16.11.2.3. By End User
16.12. Czech Republic
16.12.1. Pricing Analysis
16.12.2. Market Share Analysis, 2022
16.12.2.1. By Technology
16.12.2.2. By Application
16.12.2.3. By End User
16.13. Romania
16.13.1. Pricing Analysis
16.13.2. Market Share Analysis, 2022
16.13.2.1. By Technology
16.13.2.2. By Application
16.13.2.3. By End User
16.14. India
16.14.1. Pricing Analysis
16.14.2. Market Share Analysis, 2022
16.14.2.1. By Technology
16.14.2.2. By Application
16.14.2.3. By End User
16.15. Bangladesh
16.15.1. Pricing Analysis
16.15.2. Market Share Analysis, 2022
16.15.2.1. By Technology
16.15.2.2. By Application
16.15.2.3. By End User
16.16. Australia
16.16.1. Pricing Analysis
16.16.2. Market Share Analysis, 2022
16.16.2.1. By Technology
16.16.2.2. By Application
16.16.2.3. By End User
16.17. New Zealand
16.17.1. Pricing Analysis
16.17.2. Market Share Analysis, 2022
16.17.2.1. By Technology
16.17.2.2. By Application
16.17.2.3. By End User
16.18. China
16.18.1. Pricing Analysis
16.18.2. Market Share Analysis, 2022
16.18.2.1. By Technology
16.18.2.2. By Application
16.18.2.3. By End User
16.19. Japan
16.19.1. Pricing Analysis
16.19.2. Market Share Analysis, 2022
16.19.2.1. By Technology
16.19.2.2. By Application
16.19.2.3. By End User
16.20. South Korea
16.20.1. Pricing Analysis
16.20.2. Market Share Analysis, 2022
16.20.2.1. By Technology
16.20.2.2. By Application
16.20.2.3. By End User
16.21. GCC Countries
16.21.1. Pricing Analysis
16.21.2. Market Share Analysis, 2022
16.21.2.1. By Technology
16.21.2.2. By Application
16.21.2.3. By End User
16.22. South Africa
16.22.1. Pricing Analysis
16.22.2. Market Share Analysis, 2022
16.22.2.1. By Technology
16.22.2.2. By Application
16.22.2.3. By End User
16.23. Israel
16.23.1. Pricing Analysis
16.23.2. Market Share Analysis, 2022
16.23.2.1. By Technology
16.23.2.2. By Application
16.23.2.3. By End User
17. Market Structure Analysis
17.1. Competition Dashboard
17.2. Competition Benchmarking
17.3. Market Share Analysis of Top Players
17.3.1. By Regional
17.3.2. By Technology
17.3.3. By Application
17.3.4. By End User
18. Competition Analysis
18.1. Competition Deep Dive
18.1.1. Pall Corporation
18.1.1.1. Overview
18.1.1.2. Product Portfolio
18.1.1.3. Profitability by Market Segments
18.1.1.4. Sales Footprint
18.1.1.5. Strategy Overview
18.1.1.5.1. Marketing Strategy
18.1.1.5.2. Product Strategy
18.1.1.5.3. Channel Strategy
18.1.2. Z-Medica, LLC
18.1.2.1. Overview
18.1.2.2. Product Portfolio
18.1.2.3. Profitability by Market Segments
18.1.2.4. Sales Footprint
18.1.2.5. Strategy Overview
18.1.2.5.1. Marketing Strategy
18.1.2.5.2. Product Strategy
18.1.2.5.3. Channel Strategy
18.1.3. Asahi Kasei Corporation
18.1.3.1. Overview
18.1.3.2. Product Portfolio
18.1.3.3. Profitability by Market Segments
18.1.3.4. Sales Footprint
18.1.3.5. Strategy Overview
18.1.3.5.1. Marketing Strategy
18.1.3.5.2. Product Strategy
18.1.3.5.3. Channel Strategy
18.1.4. Merck KGaA
18.1.4.1. Overview
18.1.4.2. Product Portfolio
18.1.4.3. Profitability by Market Segments
18.1.4.4. Sales Footprint
18.1.4.5. Strategy Overview
18.1.4.5.1. Marketing Strategy
18.1.4.5.2. Product Strategy
18.1.4.5.3. Channel Strategy
18.1.5. Sartorius AG
18.1.5.1. Overview
18.1.5.2. Product Portfolio
18.1.5.3. Profitability by Market Segments
18.1.5.4. Sales Footprint
18.1.5.5. Strategy Overview
18.1.5.5.1. Marketing Strategy
18.1.5.5.2. Product Strategy
18.1.5.5.3. Channel Strategy
18.1.6. EMD Millipore
18.1.6.1. Overview
18.1.6.2. Product Portfolio
18.1.6.3. Profitability by Market Segments
18.1.6.4. Sales Footprint
18.1.6.5. Strategy Overview
18.1.6.5.1. Marketing Strategy
18.1.6.5.2. Product Strategy
18.1.6.5.3. Channel Strategy
18.1.7. Thermo Fisher Scientific Inc
18.1.7.1. Overview
18.1.7.2. Product Portfolio
18.1.7.3. Profitability by Market Segments
18.1.7.4. Sales Footprint
18.1.7.5. Strategy Overview
18.1.7.5.1. Marketing Strategy
18.1.7.5.2. Product Strategy
18.1.7.5.3. Channel Strategy
18.1.8. GE Healthcare
18.1.8.1. Overview
18.1.8.2. Product Portfolio
18.1.8.3. Profitability by Market Segments
18.1.8.4. Sales Footprint
18.1.8.5. Strategy Overview
18.1.8.5.1. Marketing Strategy
18.1.8.5.2. Product Strategy
18.1.8.5.3. Channel Strategy
18.1.9. Lonza Group Ltd
18.1.9.1. Overview
18.1.9.2. Product Portfolio
18.1.9.3. Profitability by Market Segments
18.1.9.4. Sales Footprint
18.1.9.5. Strategy Overview
18.1.9.5.1. Marketing Strategy
18.1.9.5.2. Product Strategy
18.1.9.5.3. Channel Strategy
18.1.10. Entegris, Inc.
18.1.10.1. Overview
18.1.10.2. Product Portfolio
18.1.10.3. Profitability by Market Segments
18.1.10.4. Sales Footprint
18.1.10.5. Strategy Overview
18.1.10.5.1. Marketing Strategy
18.1.10.5.2. Product Strategy
18.1.10.5.3. Channel Strategy
19. Assumptions & Acronyms Used
20. Research Methodology
Healthcare
January 2023
REP-GB-2345
250 pages
Healthcare
November 2022
REP-GB-1553
250 pages
Explore Healthcare Insights
View Reports